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Abstract

Purpose: In recent years, there has been increased clinical interest in the right ventricle (RV)
of the heart. RV dysfunction is an important prognostic marker for several cardiac diseases.
Accurate modeling of the RV shape is important for estimating the performance. We have created
computationally effective models that allow for accurate estimation of the RV shape.

Approach: Previous approaches to cardiac shape modeling, including modeling the RV geom-
etry, has used Doo–Sabin surfaces. Doo–Sabin surfaces allow effective computation and adapt to
smooth, organic surfaces. However, they struggle with modeling sharp corners or ridges without
many control nodes. We modified the Doo–Sabin surface to allow for sharpness using weighting
of vertices and edges instead. This was done in two different ways. For validation, we compared
the standard Doo–Sabin versus the sharp Doo–Sabin models in modeling the RV shape of 16
cardiac ultrasound images, against a ground truth manually drawn by a cardiologist. A Kalman
filter fitted the models to the ultrasound images, and the difference between the volume of the
model and the ground truth was measured.

Results: The two modified Doo–Sabin models both outperformed the standard Doo–Sabin
model in modeling the RV. On average, the regular Doo–Sabin had an 8-ml error in volume,
whereas the sharp models had 7- and 6-ml error, respectively.

Conclusions: Compared with the standard Doo–Sabin, the modified Doo–Sabin models can
adapt to a larger variety of surfaces while still being compact models. They were more accurate
on modeling the RV shape and could have uses elsewhere.
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1 Introduction

The clinical importance of the right ventricle (RV) of the heart has become increasingly under-
stood in recent years.1 While most attention has traditionally been given to the left ventricle
(LV),2 RV performance has been shown to have prognostic and therapeutic consequences in
a variety of heart diseases, from arrhythmogenic cardiomyopathy to pulmonary hypertension
and left ventricular failure.3,4 With this increasing clinical interest, there has also been an in-
creased interest in accurate modeling of the RV shape. Accurate assessment of the shape is
needed for accurate estimateion of the RV volume and RV ejection fraction, the latter being
a predictor of moderate heart failure.5,6 RV ejection fraction is a predictor of survival of the
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patients with idiopathic dilated cardiomyopathy7 and in unoperated patients with chronic severe
mitral regurgitation. Subnormal RVejection fraction at rest is correlated with decreased exercise
tolerance, complex arrhythmias, and mortality.4

The RV is more challenging to model than the LV.1 Viewed from a right anterolateral aspect,
the RV has a triangular shape, with an inlet leading blood from the tricuspid valve and an outlet
leading to the pulmonary valve. The RV is wrapped around the anterolateral section of the oblong
spheroid-shaped LV, which makes the RV volume concave along the RV/LV interface and con-
vex along the free wall. Due to the lower intracavitary pressures in the RV, the muscular walls
are thinner than in the LV. In a two-dimensional (2D) short axis view, the RV is crescent-shaped
with sharp corners. An example of this with approximate walls of the RV drawn in are shown in
Fig. 1. In a long axis view, the RV can appear wedge-shaped.

Echocardiography is the first line modality for imaging the heart due to its low cost, real-time
visualization, ease of use, and its safety compared to CT or x-ray due to the radiation-factor.8

Because of its complex shape, the RV is challenging to visualize with 2D imaging modalities.
However, three-dimensional (3D) echocardiography shows promise in improving RV imaging.

Two challenges of 3D ultrasound imaging of the RV are image quality and limited field of
view.9 Given the difficulties, several previous attempts on RV shape models rely on foundational
models that include relatively strong presuppositions regarding the final model’s geometry.
One such model was made by Bersvendsen et al.10 who used a Doo–Sabin model to provide
a compact geometrical representation of the RV shape.

The Doo–Sabin model gives round, organic-looking surfaces, which appear well suited for
medical shape modeling, as demonstrated by Orderud and Rabben11 as well as Dikici.12 In addi-
tion, it is easy to compute and its partial derivatives are well understood and easily calculated.
However, the Doo–Sabin model is not ideal for modeling sharp corners without having a large
number of control vertices around the sharpened area, increasing model complexity and com-
putational cost. The RV has this type of sharp geometry, particularly in the apical region3 and
where the free wall meets the interventricular septum.1 This makes it a challenge for the tradi-
tional Doo–Sabin model.

In this work, we propose a modification that allows more flexibility in terms of modeling
smooth and sharp surfaces while keeping the key properties of the Doo–Sabin model. This
paper is an extension of the conference paper “Modified Doo-Sabin Modeling of the Right
Heart Ventricle.”13 It extends the previous implementation by introducing a second approach
to the construction of sharp surfaces, which gives different end results to what the surface
looks like.

Fig. 1 A 2D slice of an ultrasound image of the RV, with approximate walls of the ventricle marked
in blue.
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This paper will also compare the standard Doo–Sabin model to the two modified, sharp Doo–
Sabin models on modeling the RV shape based on 3D ultrasound images. As the model is meant
to help with blood pool segmentation, the models should follow the endocardium. The Doo–
Sabin models on the RV will be based on results from Bersvendsen et al.10 They used statistical
shape modeling (SSM)14 to find an average RV shape by tuning the model on 14 MRI images.
This model is already used in commercial applications, the EchoPAC 3D AutoRVQ (GE
Vingmed Ultrasound, Horten, Norway), so an improvement could also be of commercial interest.

The inputs of the fitting process are the ultrasound image, six points manually placed by a
trained cardiologist, and the relevant Doo–Sabin model. The first two inputs are kept the same
between models, and the models are not changed depending on the image. A Kalman filter15 will
be used to fit the models to ultrasound images of the RVs of patients. Kalman filters have been
used before for segmentation of cardiac ultrasound images, for instance, by Orderud and
Rabben,11 Smistad and Lindseth,16 and Bersvendsen et al.10

2 Methods

2.1 Original Doo–Sabin Model

The Doo–Sabin model, originally described by Doo and Sabin,17 is a generalization of the quad-
ratic B-splines. It has similarities to the Catmull–Clark model18 but has some advantages in terms
of computation.

Let V0 be a grid of vertices forming faces (simple 2D polygons in 3D space). A series of new,
finer grids are created by constructing new vertices Vn and faces based on the previous Vn−1.
There are three steps to this process:

• any face will be replaced by a smaller face with the same number of edges. This new face is
called an F-face.

• any edge will be replaced by a four-sided face, in a sense fattening the edge into a face.
This new face is called an E-face.

• any vertex will be replaced by a face with the same number of edges as the valence of the
original vertex. For instance, in a cube, each vertex is connected to three others. Thus, each
vertex is replaced by a triangle-shaped face. This new face is called a V-face. An example
of the first two iterations of a Doo–Sabin process is shown in Fig. 2.

Each iteration of this process creates a finer grid of vertices, arriving at a limit surface when
iterated an infinite number of times. A useful property of the Doo–Sabin model is that the only
information needed to determine the surface is the coordinates of the vertices and the topology
between them. The exact placement of each new vertex is then determined by a subdivision
matrix, turning the placement of new vertices into a linear process. The subdivision matrix
S is determined locally depending on topology and is multiplied by the array of local vertices
Vn−1 and the output gives the local vertices Vn of the new grid.

Fig. 2 The first two iterations of the Doo–Sabin algorithm. Note that the blue vertices in the first
figure are replaced by polygons with as many corners as the vertex was connected to, and that the
yellow edges are replaced by yellow four-sided faces. The red faces are replaced by red faces
of the same shape, but smaller. Reproduced with permission, courtesy of Fredrik Orderud.

Bølviken et al.: Two methods for modifed Doo–Sabin modeling of nonsmooth surfaces—applied. . .

Journal of Medical Imaging 067001-3 Nov∕Dec 2020 • Vol. 7(6)



However, in practical applications, the limit surface can be approximated by doing one step
of the process and then using an analytic method rather than going through repeated steps. This
process, as well as more information on the subdivision matrix, has been detailed by Orderud
and Rabben.11 Briefly, for any point on the surface, the surface is subdivided until the point
can be evaluated using the basis functions for B-splines in 2D. The process of subdivision
is accomplished by repeated multiplication of the subdivision matrix.

In this work, the Doo–Sabin method was modified in two different ways to allow weighting
of vertices and edges, where a higher weight will create a sharper vertex or edge. This was in
both cases done by modifying the first grid created from the original starting grid, moving ver-
tices close to the original vertice or edge.

While all Doo–Sabin models used in this paper are quadratic in degree, the mathematical
methods for constructing sharp Doo–Sabin models can be applied to Doo–Sabin models of all
degrees.

2.2 Sharp Doo–Sabin Models

Wewill present two modified Doo–Sabin models and will refer to the first as the connected sharp
Doo–Sabin and the latter as the simple sharp Doo–Sabin. The modifications were in both cases
done by changing the first subdivision matrix S, which means that unless the topology of the
vertices resulting from the subdivision matrix is changed, the Doo–Sabin model retains its local-
ity and derivatives properties. There are two different types of sharpness considered here:

• A sharp vertex, meaning the surface around that vertex can be sharpened, the sharpness
centering in one point like a cone. Figures 3(a) and 3(b) show the effect of a sharp vertex in
a simple case.

• A sharp edge, meaning a sharp ridge between two vertices. Figures 3(c) and 3(d) show the
effect of a sharp edge in a simple case.

The following sections will describe how sharpness was achieved for both the connected and
simple modified models.

Fig. 3 A comparison of regular and sharp Doo–Sabin models for one implementation. (a) and
(b) The same surface but with a varying degree of sharpness at vertex 12, (a) the regular
Doo–Sabin and (b) a sharp vertex. (c) and (d) The effect of adding a sharp edge between vertices
12 and 17, and (c) a regular Doo–Sabin left and (d) a sharp edge.
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2.2.1 Connected sharpness

The first part of this section will describe how to construct a connected sharp vertex, followed by
a description of the connected sharp edges.

Let N be the number of vertices that a certain vertex is connected to. Then, for each iteration
of the Doo–Sabin subdivision, the vertex of valence N will be replaced by a face consisting of N
new vertices qi. For the connected model, a sharp vertex is achieved by moving those vertices
toward their common center, in effect shrinking the size of the face. This means that the curved
limit surface of the face is also made smaller, and the surface getting reparametrized as the face
shrinks. This causes the surface to have larger surface derivatives and take on a sharper appear-
ance. A 2D version of the idea can be seen in Fig. 4.

To start, define w, a weight defined to determine how sharp the surface should be around
any vertex. The process is defined such that when w ¼ 0 the local surface would be the same
as traditional Doo–Sabin, but as w increases the topology would be constant while the V-face
based on the former vertex would shrink, each vertex being moved linearly toward the center
of the V-face. By Nasri,19 this center is on the surface of the original Doo–Sabin model.
Moving each vertex toward the center linearly means that the center will still be on the modi-
fied surface.

The basis B-splines that are used to evaluate a regular face gives values depending on a
parametrization of the face. Thus, when the face shrinks, the result is the same curve but rep-
arametrized to fit the face, giving a sharper appearance, but keeping all the Doo–Sabin properties
including partial derivatives. This holds as long as w ∈ ½0;1Þ. When w ¼ 1, the face would be a
point, creating a higher knot multiplicity and thus partial derivatives can not be defined.

The average of the vertices in Q is calculated in terms of the subdivision matrix S. Each
vertex in Q is constructed by multiplying a vector V with a row of S. A row of S will be denoted
si, and V is the set of vertices of the original control nodes that are local, that is, relevant to the
calculation of the new vertices:

EQ-TARGET;temp:intralink-;e001;116;417qi ¼ siV: (1)

Fig. 4 A 2D illustration of the idea behind modifying the Doo–Sabin model. The red line shows the
surface and the black dots the control nodes. As the top two control nodes are moved closer
together, the surface gets a sharper curve. How close the two top nodes are is determined by
a weight. (a) A low weight and (b) a larger one.
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Taking the rows si of S that fit the above equation and averaging them gives the center c
expressed in terms of the original vertices:

EQ-TARGET;temp:intralink-;e002;116;566c ¼ 1

n

Xn
j¼1

qj ¼
1

n

�Xn
j¼1

sj

�
V; (2)

where n is the number of vertices in Q. Next, change S by replacing si with

EQ-TARGET;temp:intralink-;e003;116;504s1i ¼ w
1

n

�Xn
j¼1

sj

�
þ ð1 − wÞsi; (3)

for any row si corresponding to a vertex qi ∈ Q. From this, we get

EQ-TARGET;temp:intralink-;e004;116;442s1i V ¼
�
w
1

n

�Xn
j¼1

sj

�
þ ð1 − wÞsi

�
V ¼ wcþ ð1 − wÞqi: (4)

An example of regular versus the sharp Doo–Sabins can be found in Fig. 5.
The method for a connected sharp edge is similar to the method for connected sharp vertices.

An edge is turned into a four-sided E-face in one step of the Doo–Sabin algorithm, and we denote
the four vertices in this E-face by Q.

As in Sec. 2.2.1, the sharpness is related to the size of the face. Though in general, the edges of
the E-face are not parallel, simplifying it slightly the E-face can be seen as a rectangle, the longer
side running parallel to the original edge in what can be called the X direction and the shorter
going in the Y direction. To create a smaller face, the E-face will be shortened by moving the
nodes of the E-face in the Y direction, closer to the original edge. Figure 6 shows this concept.

For the connected sharp Doo–Sabin edge, the vertices of the E-face are paired up, and the
vertices of each pair are moved toward their common center. The pairs are based on what side of
the E-face they are on. Vertices having the same coordinate in X direction, or equivalently those
that are closest to the same vertex on the original edge, are paired together. Aweight w ∈ ½0;1Þ is
used to determine the degree of sharpness, as at w ¼ 1 partial derivatives are undefined at the
center of the face. For the two vertices in each pair, qi and qj, the center c is defined as

EQ-TARGET;temp:intralink-;e005;116;211c ¼ qi þ qj
2

¼ si þ sj
2

V: (5)

Then, si and sj is respectively replaced with

EQ-TARGET;temp:intralink-;e006;116;157s1i;j ¼ w
si þ sj

2
þ ð1 − wÞsi;j ⇒; (6)

EQ-TARGET;temp:intralink-;e007;116;104s1i;jV ¼ wcþ ð1 − wÞqi;j: (7)

w acts as a weight determining how close to the original edge the new vertices are. As in the
calculation of connected sharp vertices, the center of the surface of the E-face is by Nasri19 kept

Fig. 5 A comparison of regular and sharp Doo–Sabin models. (a) The regular Doo–Sabin, (b) the
connected sharp Doo–Sabin, and (c) the simple sharp Doo–Sabin. The sharp Doo–Sabins have a
weight close to 1 at vertex 12 and 0 elsewhere.
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constant. This is because Nasri states that the center of the E-face will be on the final surface and
because qi and qj are moved toward their common center in equal amount, so the center is
unchanged. This means that while the shape changes, it is not a dramatic change to the surface
in terms of the distance a point is moved. An example of a sharp edge can be seen in Fig. 7.

2.2.2 Simple sharpness

Simple sharpness uses many of the same terms and ideas defined in Sec. 2.2.1 and will not be
redefined or explained in detail here.

This version, like the previous, manipulates S to move certain nodes together to simulate
sharpness. In this case, for a sharp vertex Vw with weight w, all vertices Q that are part of
Vw’s V-face are moved linearly toward Vw. As before when w ¼ 0 the surface is locally a stan-
dard Doo–Sabin surface, and at w ¼ 1 all nodes in Q are at Vw, which gives a completely linear
surface but an increased knot multiplicity.

Note that Vw ∈ V and can be written as a weighted sum of the elements of V. This means that
it can be written as a vector that can be added to a row si of S. To get the desired effect, the
relevant rows si are replaced with

Fig. 7 A comparison of the regular and the sharp Doo–Sabin models. (a) The regular Doo–Sabin,
(b) the connected sharp Doo–Sabin, and (c) the simple sharp Doo–Sabin. The sharp Doo–Sabin
has weights close to 1 between the vertices 12 and 17, and also between 12 and 7 (further behind
12), and 0 elsewhere.

Fig. 6 A 2D illustration of the idea behind sharp edges. A weight is placed on the edge between A
and B, which goes in the X direction. The E-face formed by points C, D, E , and F is modified by
moving the points in the Y direction, making a new E-face formed byC1,D1,E1, and F1. Edges of
the original E-face are shown in red, and the new edges in X direction are shown in blue.
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EQ-TARGET;temp:intralink-;e008;116;735s1i ¼ wVw þ ð1 − wÞsi: (8)

An example can be seen in Fig. 5.
As for simple sharp edges, Fig. 6 still gives an understanding of the general concept. Let w be

a weight set between two vertices V1
w and V2

w in V0. Vertices in the E-face Q resulting from the
edge between V1

w and V2
w are moved toward a point Vw between V1

w and V2
w:

EQ-TARGET;temp:intralink-;e009;116;662Vw ¼ WiV1
w þ ð1 −WiÞV2

w: (9)

V1
w, V2

w, and Vw can all be written as weighted averages of the elements of V0. This allows them
to be added to si. We will refer to the row of weights used in these averages as v1w, v2w, and vw,
respectively.

Vw andWi are different for each qi ∈ Q and is based on the row si of S corresponding to qi.
Wi will be the ratio between the values of si corresponding to V1

w and V2
w. In other words, if s1

and s2 are the multipliers of V1
w and V2

w in the calculation of qi, then

EQ-TARGET;temp:intralink-;e010;116;556Wi ¼
s1

s1 þ s2
: (10)

This results in

EQ-TARGET;temp:intralink-;e011;116;503s1i ¼ wvw þ ð1 − wÞsi ¼ w½Wiv1w þ ð1 −WiÞv2w� þ ð1 − wÞsi: (11)

Note that the ordering of V1
w and V2

w does not affect the final outcome, as ð1 −WiÞ ¼ s2
s1þs2

, so

changing the order would lead to the same weights. An example of a simple sharp edge can be
seen in Fig. 7.

The connected Doo–Sabin of Sec. 2.2.1 keeps the center of the modified V-face constant,
which by Nasri19 means that the center of the local surface is kept constant. This leads to com-
paratively small changes to the surface compared to the simple Doo–Sabin, which moves the
surface closer to the control vertices.

On the other hand, the simple sharp Doo–Sabin calculates the modified rows of S without
needing to know the values of surrounding nodes. For the connected sharp Doo–Sabin, it is
needed to know which of the surrounding vertices are part of the same V- or E-face. For E-faces
even more knowledge of the local topology is needed. The modifications made to the connected
version also lead to a larger area of support, as each node qi now also depends on the control
vertices of the other elements of Q.

2.3 Evaluating Modified Doo–Sabin on Modeling the Right Ventricle

We evaluated the behavior of the sharp Doo–Sabin methods to model the RV geometry and
compared it with the original Doo–Sabin method. This was done using a Doo–Sabin model
based on a general RV shape. There were three models based on the general shape, one used
the original Doo–Sabin model, one used the connected sharp Doo–Sabin, and one used the sim-
ple sharp Doo–Sabin. The two latter models included added weights at the apex and along the
boundary between the free wall and the septum, but in all other aspects, such as topology, num-
ber of vertices and their positions in 3D space, and the three models were identical. The weights
were the same in the two modified models.

Using the EchoPAC software with a custom version of 3D AutoRVQ (GE Vingmed
Ultrasound, Horten, Norway), the three models were fitted to 16 3D ultrasound images.
AutoRVQ uses a Kalman filter15 approach to fit the images, and the initial state of models was
the same.

AutoRVQ uses six points placed manually for each file. These points are used to determine
the scale and location of the model, and the models are attracted to the landmarks to make sure
that the model fits with the users choices. One landmark is placed at the apex, one at the free-
wall, one at each border of the septum and freewall on posterior and anterior side, and two are
placed around the tricuspid valve. These were placed by a senior cardiologist and were the same
for each of the three models.
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The workflow for placing landmarks in the custom version of 3D AutoRVQ was not altered.
The user aligns the view and places landmarks on the image, then AutoRVQ calculates the output
surface, a process that takes a couple of seconds. This process has good stability, meaning that
minor changes in the input image or in the landmarks placements should only lead to small
changes in the final surface.

The three models were compared with ground truths, created by the cardiologist using
EchoPAC. EchoPAC has the ability to manually fit the models after initial fitting using the
Kalman filter. This was done by manually changing the initial surface where it does not match
the image. The cardiologist would use EchoPAC to get an initial result surface and then manually
edit it wherever it seemed necessary. This manual editing was only done on the ground truth not
on the testing models. Measurement and analysis were performed in two specific frames, one at
end systole and another at end diastole. An example of the ground truth at end diastole can be
seen in Fig. 8.

2.3.1 Doo–Sabin models of the right ventricle

Bersvendsen et al.10 used the Doo–Sabin models to model the shape of individual right heart
ventricles. The Doo–Sabin model in this paper was based on the Bersvendsen model but sim-
plified by removing 6 out of 32 vertices and making minor changes to vertice positions. This was
done as we wanted to show that a model could accurately model sharpness using the weighted
methods discussed in Secs. 2.2.1 and 2.2.2 rather than additional vertices.

The edges along the interface of the interventricular septum and the RV free wall were made
sharp by setting nonzero weights as explained in Secs. 2.2.1 and 2.2.2. These weights were all set
to 0.9. The vertex weight in apex was set to 0. The sharp edges already create a sharp geometry in
the apical region. The weights were manually tuned using training data separate from the data
used for the comparison.

2.3.2 Measuring the error of the models

For each comparison, four meshes were used: the manually segmented ground truth, a regular
Doo–Sabin model, and the two sharp Doo–Sabin model differing from the regular Doo–Sabin
only in the added weights and differing from each others only in how the sharpness is imple-
mented as discussed in Sec. 2.2. The distribution of weights was discussed in Sec. 2.3.1.

Several metrics were used to measure the error of the models compared to the ground truth.
All focused on the models at peak diastole and peak systole.

The first measure used was the Hausdorff distance. Two frames from each 3D echocardio-
graphic cine loop were used: one at end diastole and another at end systole. Each Doo–Sabin
model was compared with the ground truth in each frame, and the errors for each frame were

Fig. 8 An example of the ground truth, picture taken at end diastole.
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added together, giving a total error for each model. This was done across all 16 3D ultrasound
images, and the errors across files were averaged.

The regions close to the anterior were not taken into account due to low image quality.9 This
decision was taken by the cardiologist, as the confidence of the manual segmentation was also
low. The exact part to remove was determined based on the data from the cardiologist’s ground
truth: the cardiologist had established two points as the posterior P and the anterior A of the RV.
A plane cropping away the most anterior part of the model was determined using a point and a
normal vector. The point was 0.2Pþ 0.8A and the normal vector was A − P. Any point on the
anterior side of the plane was removed. The 4:1 ratio of the point was chosen based on a manual
assessment of where the image quality usually deteriorated. A figure illustrating how the removal
was done is seen in Fig. 9.

The second measure used for the evaluation was the mean surface distance (MSD). The parts
closest to the anterior were not taken into consideration. The error on both peak systole and
diastole was averaged, and an improvement in percent was calculated.

The third measure was the volume of the models at peak diastole and systole. This was cal-
culated using a surface integral based on the Divergence Theorem. The error in milliliters was
calculated, as was stroke volume and ejection fraction.

3 Results

3.1 Hausdorff Measure

Figure 10 shows the error as described in Sec. 2.3.2 in millimeters of both models for each 3D
ultrasound image compared to the ground truth. Note that these errors are averaged over both
measured frames in each ultrasound image.

For each file, we calculated the percentwise improvement of connected and simple sharp
models over the regular Doo–Sabin, calculated by 100 R−S

R where R is the error of the regular
Doo–Sabin and S is the error of the sharp Doo–Sabin. These values were then averaged. On
average, the connected sharp model improved on the regular model by 0.6% and the simple
sharp model by 0.1%.

An example of the three models fitted to the same ultrasound image is seen in Fig. 11.
Sharpness is clearly seen at the top of the two right-most images.

3.2 Mean Surface Distance

Table 1 shows the error in terms of MSD. The connected sharp model has an average improve-
ment of 5.3% and a median improvement of 2.6%. The simple sharp model has an average
improvement of 2.7% and a median improvement of 6.2%.

An example of the MSD of each surface type can be found in Fig. 12. Highest error can
be seen at the border between septum and freewall and at the atrioventricular plane. For the

Fig. 9 A simple figure showing how points were removed on the regions close to the anterior of
the RV. The blue lines form the RV, and A and P were set by the cardiologist. M is a weighted
average of A and P, M ¼ 0.2P þ 0.8A. A vector V is determined by V ¼ A − P . In the image, it is
set to start in M . Together M and V determine a plane L. Any point on the RV to the right of L
was removed.
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sharp models, the error is significantly lower compared with the regular model at the pos-
terior side.

3.3 Volume Measures

Improvement in terms of volume was calculated by taking the absolute value of the difference
between the models and ground truth at both peak diastole and systole and averaging them. On
average, the smooth Doo–Sabin had an error of 10 ml, the connected sharp had an error of 8 ml,
and the simple sharp had an error of 6 ml. This means the connected sharp had an average
improvement of 20% and simple sharp 40%.

Bland–Altman plots20 of the volumes at ED are shown in Fig. 13.
Stroke volumes were calculated based on volumes, and for the three test-models, the absolute

difference in stroke volume was determined. The results are shown in Fig. 14. On average, the
regular Doo–Sabin had an error of 6 ml, whereas both of the sharp models had an average error
of 5 ml, meaning an improvement of 16%.

Taking the absolute value of the difference between the ground truth and each of the models,
on average the error of ejection fraction is 4.9 for the regular Doo–Sabin, 4.9 for the connected
sharp Doo–Sabin, and 6.0 for the simple sharp Doo–Sabin.

Fig. 11 The regular Doo–Sabin and the two sharp models fitted to a 3D ultrasound image. (a) The
smooth model, (b) the connected sharp, and (c) the simple sharp. Sharpness can clearly be seen
at the top in the two right-most models, marking the border of the septum and free-wall.

Fig. 10 Hausdorff error of each file for each of the three models. Error is in millimeters.
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4 Discussion

The aim of this work was to describe a compact data model that can adapt to a large variety of
shapes for real life applications and to illustrate its usefulness in medical modeling by testing the
model on the complex RV geometry.1 This work builds on the previous studies by Bersvendsen
et al.,10 Orderud and Rabben,11 and others.

We have shown that it is possible to construct versions of the Doo–Sabin model that allows
for sharper vertices and edges, similar to the way that deRose et al.21 did for the Catmull–Clark
method. These models are easy to compute as they are local processes, and the calculation of B-
splines and subdivision matrices is well-known and easy. The simple Doo–Sabin is the easiest to
calculate of the two. The sharp Doo–Sabins gives a more flexible model compared with the
classic Doo–Sabin while keeping useful properties such as locality and the easy calculation
of partial derivatives as long as w ≠ 1.

This work focuses on the modeling of 3D images. The Doo–Sabin process forms a 2D sur-
face that models the walls in 3D space. A generalization to 2D images could be possible by
replacing the Doo–Sabin surface with one-dimensional (1D) B-splines, a close 1D equivalent.
Weighting of B-splines to achieve similar effects as presented here could be possible. Several
measures were used to determine the error of the models compared with the ground truth, as
detailed in Sec. 2.3.2. Not much improvement was found in terms of Hausdorff measure. This is
to be expected, as the Hausdorff measure solely determines the location with the highest error. As
detailed in Sec. 2.3, the models are attracted to the landmarks set by the user. This in particular

Table 1 Results of comparison of normal Doo–Sabin models and sharp Doo–Sabin models
against a ground truth traced by a cardiologist. Error between ground truth and the other models
wase determined using the MSD. Calculation of improvements are detailed in Sec. 3.1.

File
number

Error connected
sharp

Doo–Sabin
(mm)

Error simple
sharp

Doo–Sabin
(mm)

Error regular
Doo–Sabin

(mm)

Improvement
connected sharp
Doo–Sabin (%)

Improvement
simple sharp

Doo–Sabin (%)

1 2.31 2.36 2.16 −6.79 −9.24

2 2.6 2.14 2.78 6.41 22.96

3 2.32 2.25 2.38 2.81 5.51

4 2.06 1.93 2.15 4.56 10.34

5 2.55 2.28 2.47 −3.1 7.74

6 1.85 1.62 1.91 2.95 15.18

7 1.99 1.92 2.06 3.23 6.81

8 0.33 1.19 0.71 53.87 −67.23

9 1.87 1.89 1.85 −1.42 −2.45

10 1.33 1.67 1.71 22.18 2.74

11 1.58 1.54 1.63 2.9 5.26

12 2.24 1.79 2.2 −2.04 18.55

13 1.99 1.82 1.91 −4.4 4.92

14 2.13 2.02 2.11 −0.76 4.21

15 3.35 3.13 3.4 1.34 8.00

16 3.17 2.92 3.25 2.4 10.17

Average 2.11 2.03 2.17 5.26 2.72
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holds for the borders of the septum and freewalls. These are the regions where one might expect a
smooth model struggle with filling in the RV shape, as there is often a sharp edge here. The
moving of the model to the landmarks ensures that does not happen, but the regular Doo–
Sabin might still struggle with fitting the general sharp shape and instead go into the septum
or freewall. Both the connected and simple sharp model do better in terms of MSD, and Fig. 12
indicates that the regular Doo–Sabin struggles at modeling the sharp corners of the RV, as it has
larger error at the border of the septum and freewall.

Both of the sharp models show good improvement in terms of volume accurary and stroke
volume as shown in Sec. 3.3. Despite this, no improvements were found in terms of ejection
fraction. A likely explanation of this is that EchoPAC uses a Kalman filter15 process to estimate
the walls of the RV. That means that the estimate at each frame is based on the previous frame,
and so an error in model shape can carry over from one frame to the next if the image data do not
have good enough quality to correct it in the failing region. It is possible that if a model is too
large at peak diastole it will also be too big at peak systole in roughly the same proportion,
making the ejection fraction about the same.

The connected sharp Doo–Sabin of Sec. 2.2.1 was developed so that modifying already
existing Doo–Sabin models would be easy. By Nasri,19 the method described in this article
ensures that the center of each face is unchanged by changed weights and that the center of
the local surface remains the same. This makes it easy to modify models that already exist.
These methods take advantage of the fact that the Doo–Sabin model is local, so modifying the
subdivision matrix in some places will not cause changes outside of a small region. It has an
average improvement in terms of MSD of 5.3% and an improvement in volume of 14.4%.

The connected sharp Doo–Sabin did better on MSD on average, but the simple sharp Doo–
Sabin did better in median. A partial cause of this is file nr 8, as seen in Table 1, which is unusual

Fig. 12 A comparison of the error of the smooth, connected sharp, and simple sharp models in
one example, compared to the ground truth. Each point on each surface is colored depending on
its distance to the ground truth. Yellow indicated low error and red high error, all models use the
same scale. (a) The regular Doo–Sabin, (b) the connected sharp Doo–Sabin, and (c) the simple
sharp Doo–Sabin.
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for its low error for all three models, meaning that any small deviation leads to a big increase in
percent-wise error.

The simple sharp Doo–Sabin has the advantage of being easier to compute. It is a more local
process and needs less information about the local topology. The substantial improvement of the

Fig. 13 Three Bland–Altman graphs comparing the regular Doo–Sabin and the two sharp models
to the ground truth. The measure is error in volume estimation at peak diastole. (a) The regular
Doo–Sabin and has average −7.8 and standard deviation 11.2. (b) The connected sharp model
and has average −4.8 and standard deviation 10.4. (c) The simple sharp model and has average
1.2 and standard deviation 8.6.

Fig. 14 The error in stroke volume for each model for each file. Error is in absolute difference in
stroke volume and is measured in millimeters.
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simple sharp Doo–Sabin in terms of volume makes it a promising tool, and it is possible that the
support for larger deformations are an advantage in RV shape segmentation.

The sharp Doo–Sabin models could prove useful in a many applications, and in this article
we have shown improvements in capturing the shape of the RV.While there was no improvement
in terms of Hausdorff measure, the sharp Doo–Sabins did better than the original when compared
by MSD and volume measures. This shows the advantages of the sharp Doo–Sabin when dealing
with anatomy that has sharper and edgier structure than what the regular Doo–Sabin excels at.
Here, the comparison was done on ultrasound images, but similar improvements would be
expected in other imaging modalities or even nonmedical use cases.

The models have good stability, small differences in user placed landmarks or in ultrasound
image should only lead to minor changes in output surface. The steps of the model fitting process
are the same as for regular EchoPAC, and there is not a big increase in time. After landmarks are
placed, the calculation of the model only takes a couple of seconds.

The study has some limitations. Looking at the results of Table 1, we see that in 6 out of 16
3D ultrasound images the regular Doo–Sabin did better compared with the connected sharp Doo-
Sabin model on MSD. The same is true in 3 out of 16 images in the case of simple sharp Doo-
Sabin. Out of the 32 frames volume was evaluated at, the regular Doo–Sabin was more accurate
in 12 compared to both models.

Segmentation of an ultrasound image will always be subject to human interpretation, and it is
therefore not possible to establish an indisputable ground truth. Also, the image quality of some
of the ultrasound images was poor, leading to uncertainty in both manual segmentation and the
software’s detection of RV walls. The dataset was limited, with little variation in heart size and
pathology. The weights in the sharp Doo–Sabin model are added manually when constructing
the model and determined using training data. This obviously creates some subjectivity in
the model.

For further research, applying the modifed Doo–Sabin methods to other aspects of the heart
could lead to improvements. The model could also be used on nonmedical modeling. Sub-
division surfaces are popular in computer animation, and these changes would allow Doo–Sabin
to model a larger variety of surfaces. An improvement to the current sharp Doo–Sabins would be
for the weights to be automatically adjusted, instead of manually.

5 Conclusion

The sharp Doo–Sabin models both outperformed the normal Doo–Sabin model when it comes to
modeling the RV shape in terms of MSD and volume. While both the connected sharp Doo–
Sabin model and the simple sharp Doo–Sabin model on average came closer to the ground truth
than the regular Doo–Sabin, the simple sharp model did better in terms of the volume accuracy. It
also did better in median MSD, whereas the connected sharp did better on the average MSD. The
connected sharp Doo–Sabin model also did slightly better on Hausdorff measures and was better
on stroke volume. On ejection fraction, the connected sharp did as well as the regular, whereas
the simple did worse.

Needing fewer control nodes to model sharp contours, the sharp models can achieve a more
effective calculation and a more robust model. This indicates its improved usefulness which
might be interesting to explore in further research.
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